Photonic Integrated Circuits -Requirements on Integration & Assembly

Thomas Hessler info@ligentec.com

Workshop on Photonics Packaging, Alphach, February 2022

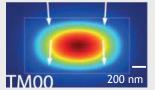
LIGENTEC Leader in low loss Silicon Nitride Integrated Photonics

European PIC Company

European origin

Europe based

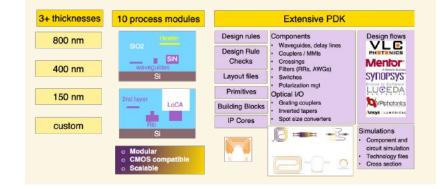
Global React


Headquarters in Lausanne (CH) Originating from EPFL (Kippenberg Lab)

LIGENTEC Snapshot

LIGENTEC

Thick SiN – the game changer



90% of the light is confined Low propagation loss

- Small chip size
- Non-linear optics
- High Power, VIS to IR

All Nitride Core Technology: combining the benefits of

- Silicon Nitride (VIS-IR, low loss, high power) with •
- Silicon Photonics (small chip size, scalability)

Versatile PIC Platform

Commercial Offering R&D and Prototyping Custom PIC Developments Manufacturing Open access, low barrier High flexibility & competence Niche to high volumes

We deliver PICs

Do we really need Photonic Integration? Use case: Quantum Computing

LIGENTEC

Optical Quantum Computers Room temperature operation Do we really need Photonic Integration? Use case: Quantum Computing

LIGENTEC

Purpo de la construcción de la c

Optical Quantum Computers

- Room temperature operation
- Not scalable with discrete optics!

PIC based Photonic Quantum Computers

• Scalable with existing, semiconductor like manufacturing technologies

Problem - Barriers for Breakthrough Photonic Integrated Circuits (PICs) ...

LIGENTEC

... have a huge potential

Disruptive PICs:

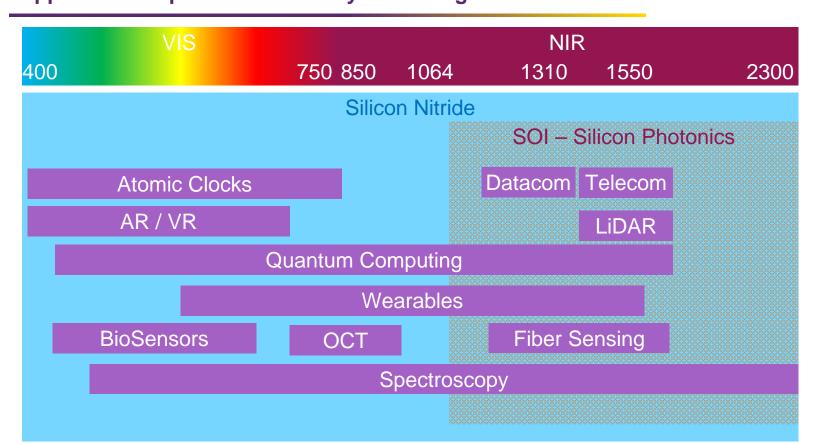
- Size: 100x smaller
- Weight: 100x lighter
- **Power:** 1/10th of energy consumption
- **C**ost: 1/100th of cost

To repeat the electronic IC revolution.

... and have become technology of choice in

selected markets,

but larger scale adoption



is still challenged by:

- □ On chip and in/out coupling losses
- □ Long & expensive R&D cycles
- □ No one fits all solution

Material Platforms Application requirement diversity: wavelength

Challenge application diversity Combine the best

LIGENTEC

High application diversity, no one fits all solution, Optimizing for a single application only possible high-volume applications

Approach:

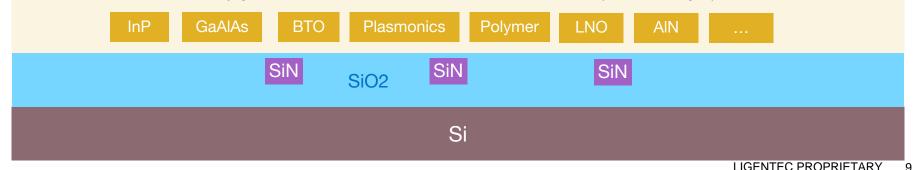
Best and scalable base platform for circuitry with standard I/Os and PDK

Application specific choices of integration

 \Rightarrow Combine the best to lower adoption barriers

One basis, large diversity in the add-ons Materials and Functionalities

LIGENTEC


Use SiN as base platform for general circuitry

- o Comprehensive PDK
- Standard I/Os
- Scalable to volume

Add-on Functionalities for Light

- o Generation
- o Modulation
- Amplification
- o Detection

Many great materials, each comes with their own merits (and challenges):

Integration Technologies

LIGENTEC

Monolithic Integration

Deposited or grown on the wafer

- Best cost option
- Limited material choice

Heterogeneous Integration

Transferred / bonded on the wafer

• High flexibility

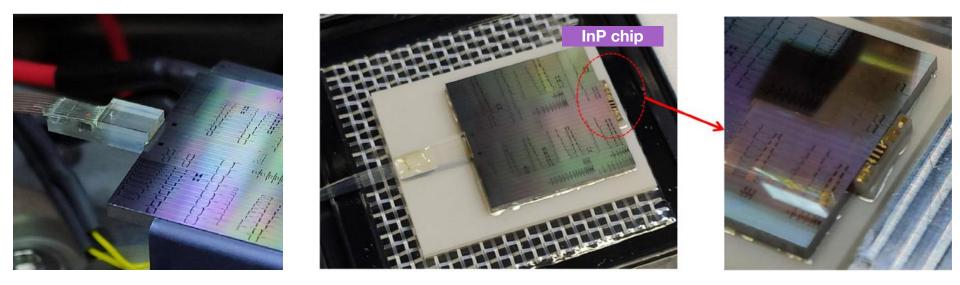
Wafer to wafer


Low cost potential

- **Hybrid** Integration **Assembled** in the package
- High flexibility

Butt coupled PDs

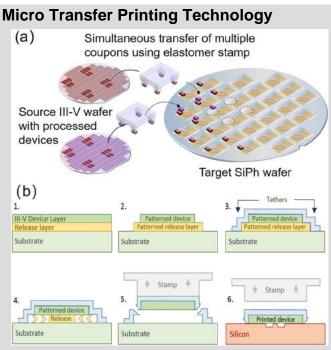
Costly in volumes


Chip to wafer

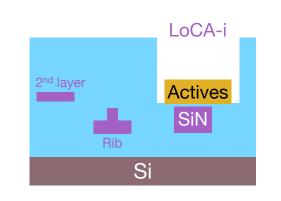
uTP

Hybrid Integration – edge coupled Fiber coupled passive SiN Chip with InP Chip attached

LIGENTEC

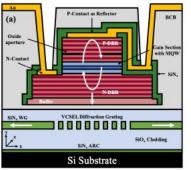


Fiber Array to SiN waveguides


Glued on carrier

III-V Chip attached to SiN PIC

Heterogeneous Integration – Chip to Wafer Example Micro-Transfer Printing



Roelkens *et al.*, in *2018 IEEE Optical Interconnects Conference (OI)* (IEEE, USA, 2018), pp. 13–14.

LIGENTEC

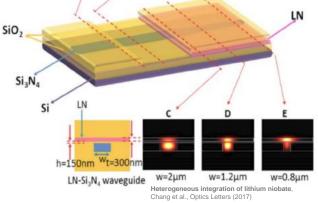
Example VCSEL on SiN PICs

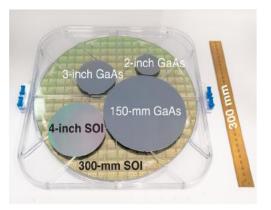
Goyvaerts et. al. 2021, Optica 8, 1573-1580 (2021)

Micro Transfer Printing:

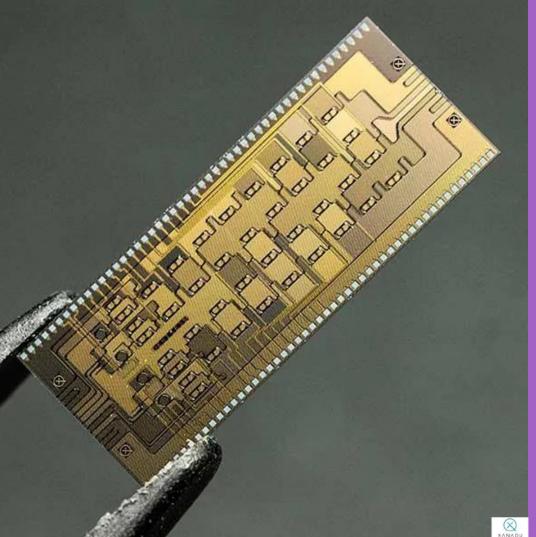
- Wide range of materials / components
- Cost effective, on-wafer processing
- Highly efficient usage of source material
- Great for the integration of III-V materials (lasers, modulators, amplifiers, modulators, detectors)
- Match of different components / materials on one wafer
- Requires specially engineered source Epi stacks

Heterogeneous Integration – example Wafer to Wafer Thin Film Lithium Niobate on SiN

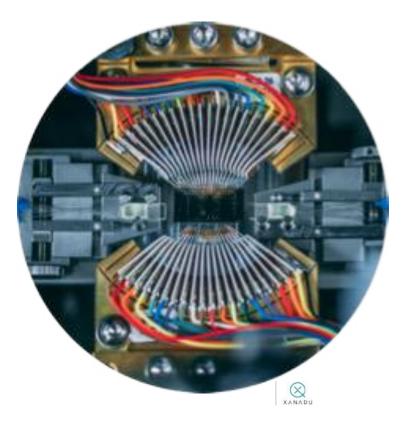

LIGENTEC


Thin Film LNOI bonded on SiN PIC wafer

Key Benefit


 Lithography replaces mechanical positioning

Key Challenges


- Yield of combined stack
- Wafer size compatibility
- Source wafer utilization

PICs are

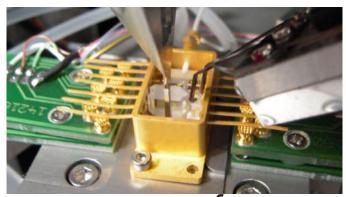
useless,

PICs are useless, unless they

are

packaged!

PIC packaging World Connection

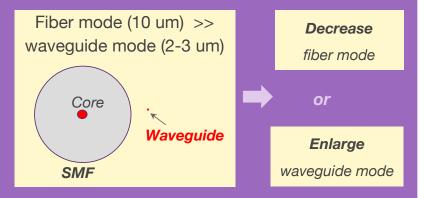

LIGENTEC

Electrical Connections

• Critical for high frequencies (>10GHz)

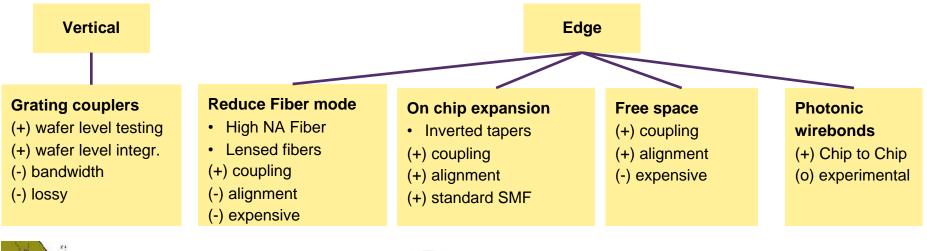
Housing / encapsulation / stabilization

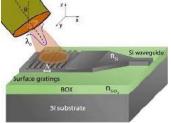
- Hermetic packaging
- Thermal stabilization
-

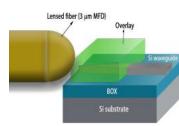

ficontec photonics assembly & testing

Optical Connections

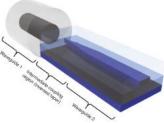
 Important source of loss: 1dB (20%) to 6dB (65%) loss per coupling

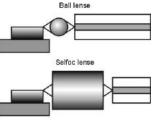

Problem statement:


Mode mismatch, very different to electrical connections. Sub um accuracies required.



Solutions Strategies Fiber to Waveguide Coupling Strategies





Appl. Sci. 2018, 8, 1142; doi:10.3390/app8071142

Nanophotonics 2018; 7(12): 1845-1864

DOI: 10.5772/51626

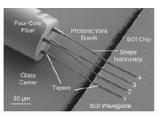
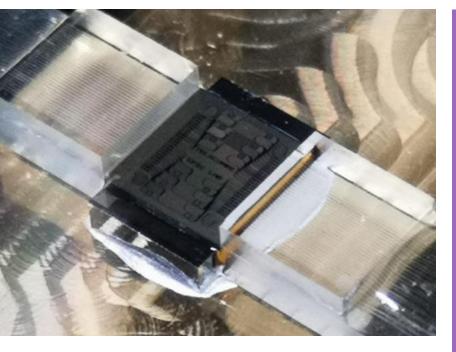



Fig. 2. Edulated arreads. Bustania also beach (DWB) assured t

DOI:10.1109/OIC.2014.6886114

Mode Size expansion helps Optical I/O – there is more

LIGENTEC

Challenges:

- Mode matching
- · Reflections, facet quality
- Materials
- Aging, shrinkage
- Tolerances
- Low cost at high precision
- High Mix Low Volumes
- Missing standards

Requires

- Sophisticated mode expanders
- Design for assembly
- Close interaction PIC designer, foundry, packaging house and equipment manufacturer

Conclusions First integrate, then assemble

LIGENTEC

Integration

- Photonic Integration needed & disruptive
- Requires use of different technologies
- Wafer scale integration preferred choice

Assembly

- Higher complexity than electronics
- Small mode fields of waveguides makes assembly expensive
- Mode expansion for cost reduction
- Use standardization

Swiss PIC industry needs **local expertise** in assembly & packaging to leverage existing strength in chip technologies.

LIGENTEC

Thanks to the Ligentec Team

Join our PIC journey!

check out our openings at ligentec.com/careers or send your CV to hr@ligentec.com

Zermatt 2019 20