An electro-optic integrated platform for telecom and sensing devices

Rachel Grange

ETH Zurich Department of Physics Institute for Quantum Electronics Optical Nanomaterial Group

<u>www.ong.ethz.ch</u> grange@phys.ethz.ch @rachel_grange

The Optical Nanomaterial Group ONG

Marc Reig

Escalé

Fabian

Vogler-N

Andrea Morandi

Saerens

Karvounis

Weigand

Dénervaud

Eric

Qiu

Wentao

Andreas Maeder

Hanh Duong

Alumni: A. Sergeyev, N. Hendricks, C. Renaut, B. Jordaan, F. Richter, M. Timofeeva, Flavia Timpu, Romolo Savo, Jolanda Mueller, Franciele Henrique

E *H* zürich

Teidi Hostettler, D-PHYS

Why miniaturizing quadratic optical materials?

Telecommunication

Modulators

Reig Escalé, et al. OL 43(7) 2018 Pohl, et al. IEEE PTL 33 (2) 2020

Sensor

Source

Spectrometer

Pohl et al. Nature Photonics 14 (1) 2020

Supercontinuum

Reig Escalé, et al. APL Photonics 5 (12) 2020

Does this material exist at a small scale?

Bulk crystal

Lithium Niobate (LiNbO₃)

At small scale

Rabiei, P.; Gunter, P. Applied Physics Letters **2004**, 85 (20).

Kim, E.; ... Grange, R. ACS Nano **2013**, 7 (6).

More properties of quadratic $\chi^{(2)}$ materials: LiNbO₃ Electric field

Electro-optic

Change in the refractive index linearly proportional to the electric field

Electro-optic tensor $\chi^{(2)}$ of LiNbO₃

$$\begin{pmatrix} \Delta(1/n^2)_1 \\ \Delta(1/n^2)_2 \\ \Delta(1/n^2)_3 \\ \Delta(1/n^2)_4 \\ \Delta(1/n^2)_5 \\ \Delta(1/n^2)_6 \end{pmatrix} = \begin{pmatrix} 0 & -3.4 & 8.6 \\ 0 & 3.4 & 8.6 \\ 0 & 0 & 30.8 \\ 0 & 28 & 0 \\ 28 & 0 & 0 \\ -3.4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}$$

E *H* zürich

Traditional vs integrated modulator design

Mode Area > 30 μm² <40 Gbit/s

100 Gbit/s

Traditional vs integrated modulator design

Mode Area > 30 μm² <40 Gbit/s

Mode Area < 1 μm² 100 Gbit/s Parallelization

Current on-chip platforms for modulators

Plasmonics: high speed but high optical losses (~dB/μm)

→ polymers: material degradation in long term

- **SOI, InP**: Carrier injection but high voltage
- LNOI: Low-loss modulator (<0.5 dB/cm) but large foot print,</p>

less convenient parallelization

C. Haffner et al., Nature Photonics 9, 525–528, 2015

C. Wang et al., Optics Express 26(2), 1547-1555, 2018

Concept of the integrated Bragg modulator

Aim: reduce **footprint** in **LNOI** modulators **10×500 µm²**

with a single waveguide and a modulation at the Bragg resonance

Reig Escalé, ..., Grange, Optics Letters 43(7) 2018

Concept of the integrated Bragg modulator

Multilayers of alternating materials with varying n, each layer causes a partial reflection

Stop band in transmission

Nanofabrication at BRNC and FIRST clean rooms

ETH zürich

Reig Escalé, ..., Grange, Optics Letters 43(7) 2018

Concept of the integrated Bragg modulator

$V_{pp} = 8.9 \text{ V} \text{ at } 50 \Omega$

Stop band in transmission

Nanofabrication at BRNC and FIRST clean rooms Collaboration with Juerg Leuthold, ETH, D-ITET

< Hard Decision threshold

EHzürich

Which integrated devices ?

- A Bragg optical modulator
- A nano spectrometer

Current spectrometers

N. Blind et al., Opt. Express 25(22), 27341-27369, **2017**

Fourier Transform

SOI circuits

Integrated optics

1 mm Deep etch

P. Cheben et al., Opt. Express 15(5) 2007

This work

D. Pohl, ..., R. Grange, *Nature Photonics* 14 (1) 2020

E *H* zürich

On-Chip Fourier Transform Spectrometers

Stationary-wave integrated Fourier-transform spectrometer (SWIFTS)

Undersampling / Limited bandwidth (15 nm)

E. Le Coarer et al., Nature Photonics 1(8), 473-478, 2007

Thermo-optic Fourier-transform spectrometer

Full sampling (>100 V) / Extended bandwidth

M. Souza et al., Nature Comm. 9(665), 2018

Lithium Niobate Nano Spectrometer V=0

Undersampling

Electro-optic sampling: monochromatic

87 Samplers \times 3 μ m Pitch = 261 μ m

Electro-optic sampling: bandwidth

Retrieval of the standing wave without undersampling

>500 nm bandwidth with <20 V

Basically limited by single-mode condition of the waveguide $(\lambda_{SM} \sim 1000-1800 \text{ nm})$

Applications of the broadband integrated spectrometer

Non-invasive measurement of human brain activity

Biomedical Optics Research Laboratory, University Hospital Zurich

EHzürich

Rachel Grange 20

Outlook

Communication:

Electro-optic modulators Frequency combs (WDM)

Lithium niobate platform

Sensing:

Dual comb spectroscopy Beam forming (LIDAR)

SPDC

Bottom up metasurface

Random network

Outlook

Communication:

Electro-optic modulators Frequency combs (WDM)

Lithium niobate platform

Sensing:

Dual comb spectroscopy Beam forming (LIDAR)

ong.ethz.ch

grange@phys.ethz.ch

