

ADDITIVE MICRO-MANUFACTURING OF METALS -EPHJ & Swiss Photonics-

Imagine the unseen

AGENDA

- CERES Print System Overview
- Print Process, Materials, Size Range
- Material Properties
- Typical Use Cases
- Applications in Photonics
- Q&<mark>A</mark>

EXADDON AG

- Formerly part of Cytosurge AG developers of intra-nuclear cellediting solutions (FluidFM)
- We have pioneered µAM: additive micromanufacturing of metals
- Exaddon has ongoing research collaborations with respected academic institutions

INTRO

PUBLISHED RESEARCH

Well integrated into the science community

- High impact publications published frequently
- Focus on cooperation and know how exchange

CERES -PRINT SYSTEM

COMPETITIVE LANDSCAPE POSITION

EXADDON µAM COMPETITIVE LANDSCAPE

CERES -PRINT SYSTEM

UNIQUE PRINTING TECHNOLOGY

- Dispense liquids in 2D lines
- Print complex 3D structures out of metals
- A system for innovators & visionaries in additive micromanufacturing

ELECTRO-CHEMICAL WHAT CAN BE PRINTED? DEPOSITION

Possible Print Materials 1 H He A A 10 ĉ 0 F Ne Be solicy magnetistic 12 Mg solicit 20 Ca 40078 stronger 38 Sr в N 16 S 13 AI 201 1903 07(5cm) 18 17 CI 15 P Si Ar 36 36 31 21 Sc 44.000 91000000 39 Y 35 Ga Cu Zn Ge Br Kr Ti CI Ni As Se Fe Co 1000 154 Nb Žr Mo 43 Tc 44 Ru ⁴⁵ Rh Pd Ag Cd Sn Sb In Te Xe 35.468 Caleboon 55 #7.62 tonum 56 10108279 71 nidon 86 72 Hf 73 74 W Pb 170.90 astatine 85 84
Instruction (2)
Instructio 57-70 81 CS 152.01 152.01 153.051 87 Ba Lu 174.07 Invisionchem 103 TI Bi Po At Rn * 137 33 radium 88 114 89-102 Fr Uuq Ra Lr * *

Falola et al. Curr. Op. in Solid State and Mat. Sci. 2015

Metals that can be electrodeposited from aqueous solution

We have experience 3D printing Cu, Au, Ag, Pt, Ni

Corporate Presentation

7

EXADDON IONTIP IONTIP PRINTING PROBE

- A hollow, micro-channeled cantilever mounted to a user-friendly plastic housing containing the ink reservoir (1 µl capacity)
- Ink reservoir (circled) is filled before printing with a micropipette
- Iontip aperture diameter is just 300 nm

3D OBJECT PRINTING SIZE

$\mathsf{NANOMETER} \leftrightarrow \mathsf{MILLIMETER} \ \mathsf{OBJECTS}$

- Possible object dimensions:
- Starts at nanometer sizes
- Up to 1 mm
- Printing speed up to 4 µm/s
- Changing print parameters changes minimum feature size (through tuning voxel diameter)
- Voxel size tunable on-the-fly
- 15 x 15 mm / 25 x 25 mm substrates (standard sizes)
- Substrate thickness is 0.4 1 mm

MATERIAL PROPERTIES METAL UNIFORMITY & HOMOGENEITY

Mechanical hysteresis testing

(Click video to play)

- The copper is mechanically stable
- The copper behaves elastically
- There is a good adhesion to the gold substrate

- The deposited material has >99% density
- Homogeneous grain structure no visible traces of individual voxels

Electrical resistivity measurement

- Resistivity of printed structures: $\rho_{copper} = 2.2E-8 \ \Omega \cdot m$
- This equals 75% of the conductivity of bulk copper

MATERIAL PROPERTIES TENSILE STRENGTH & YIELD STRENGTH

- Conducted on 5 µm Ø copper test pieces printed with CERES
- Test pieces subjected to constant elongation using specialized nanoscale test platform (Alemnis AG, Switzerland)
- Behavior as expected; i.e. like a macroscale sample produced with conventional manufacturing techniques
- See more at: <u>exaddon.com/material-properties</u>

Tensile strength of µAM structures = **342.5 MPa** Comparison: cold-drawn copper = 344 MPa*

Yield strength of µAM structures: **320 MPa** Comparison: cold-drawn copper = 333.4 MPa*

*Copper, Cu; Cold Drawn (matweb.com)

EXADDON USE CASE INDUSTRIES

POTENTIAL APPLICATIONS IN PHOTONICS

- Existing uses of 3DP in photonics
- Helices & lattices
- 2D line printing
- Micro object arrays

EXISTING USES OF µ3DP IN PHOTONICS

Waveguides	Bertoncini A., Liberale C. "3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices," Optica 7, 1487-1494 (2020)
Micro lenses	Thomas R., Li J., <i>et al.</i> "In situ fabricated 3D micro-lenses for photonic integrated circuits," Opt. Express 26, 13436-13442 (2018)
Gold helices	Gansel J.K., M. Thiel M., et al. "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer" Science, Vol 325, Issue 5947 pp. 1513-1515 (2009)
Photonic Crystals	Tubio C., Nóvoa López J.A., et al. "3D printing of Al2O3 photonic crystals for terahertz frequencies." RSC Adv. 6. 2450. (2016)

How could CERES be used to used for such applications?

3D PRINTED HOLLOW OBJECTS

Organic, non-linear geometries are possible

Copper microchannels printed on a flexible polymer substrate (PEDOT:PSS)

3D PRINTED HOLLOW OBJECTS

Hollow cone (aperture could be created by FIB milling)

Height 400 µm

EXADDON

MICRO DOTS @ LARGE AREA

HELICES AND COIL STRUCTURES

TUNING PRINT PARAMETERS

Ercolano et al. Adv. Eng. Mater. 2019

- CERES offers tunable print parameters on-the-fly
- Voxel diameter changed by adjusting the applied pressure of print ink through the tip
- Same print tip throughout
- Each strand is a different diameter
- Strands printed layer-by-layer
- Unique technology; unrivalled at these dimensions in metal printing

LATTICES FOR FUNDAMENTAL RESEARCH

EXADDON

2D SURFACE PATTERNING

Fluorescently labeled polystyrene beads (20nm) on glass

DAPI in gylcerol (1mg/ml) on coated glass

- Microscopic nanolithography printer
- Printing of vectors and complex structures
- Dispensing liquids enables printing of
 - Metals
 - Alloys
 - Polymers
 - Nanoparticles
 - In general, particle sizes <= 200 nm, suitable viscosity</p>
- Up to 100 µm/s writing speed
- Precision liquid/particle control
- µm to cm lines and movements
- Fluid rate as low as femtoliters/s

2D SURFACE PATTERNING

Grüter et al., Nanoscale (2013)

MICROSCALE OBJECT ARRAYS

1600 pillars printed on a 1mm x 1mm grid. Each pillar is ~1.6 μm Ø

Printed objects

Ren W., et al. Materials. 2020

THANK YOU FOR YOUR ATTENTION

Edgar Hepp CEO

T +41 44 520 45 45 hello@exaddon.com

exaddon.com