

Towards 20 GHz realtime neural network processors via semiconductor lasers

X. Porte¹, A. Skalli¹, N Haghighi², S. Reitzenstein², J.A. Lott², D. Brunner¹

¹ FEMTO-ST / Optics Dept., CNRS Univ. Bourgogne-Franche-Comté, Besançon, France

² Institut fur Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstraße 36,10623 Berlin, Germany

Swiss Photonics Workshop on Optical Computing: current / emerging approaches & applications

NN architecture and energy consumption

Reuther, et al., Arxiv: 2009:00993.

MIT Technology Review

Artificial Intelligence / Machine Learning

≡Q

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao	Jun 6, 2019

© Hussein Nur

Experimental setup / scheme

Reservoir	VCSEL Reservoir
Nodes / Neurons	Modes ≈ 30
Connections	Carrier diffusion / Cavity diffraction

Porte, et al., J. Phys. Photonics https://doi.org/10.1088/2515-7647/abf6bd.

Experimental setup / scheme

Injection locking / Information injection

Scan λ :highest susceptibility to optical injection

Locking: scan the injection ring width to fully lock the VCSEL.

Porte, et al., J. Phys. Photonics https://doi.org/10.1088/2515-7647/abf6bd.

Optical modes: neurons embedding in near field

Laser injection locking: linking neurons to input information

sciences & TECHNOLOGIES

Learning strategy

 $n_{\text{mirrors}} = \text{ceil}(\alpha * \text{MSE})$

Porte, et al., J. Phys. Photonics https://doi.org/10.1088/2515-7647/abf6bd.

Header recognition task

• Training sequence of size N (batch size): 50% of the classification target, 50% of the other digits:

- After each epoch flip mirrors on DMDb:
 - If the MSE decreases keep the change
 - If it increases: revert the change then flip other mirrors
- Keep going until the error is bellow a threshold.

Porte, et al., J. Phys. Photonics https://doi.org/10.1088/2515-7647/abf6bd.

LA VCSEL

DMDb

Results

<pre>bit Re Public Publ</pre>	Value Bu3 logical 10 1 35 141 DMD_Seq 141 DMD_Seq 141 DMD_Obj 141 DT_struct 500 3 Training\3bit\' 1	2
<pre>teurs * anas.skalli * Desktop * LA.VCSEL_Scope .> </pre> <pre> </pre> <pre></pre>	Value Bu3 logical 10 1 35 1x1 DMD_Seq 1x1 DMD_Obj 1x1 DT_struct 500 3 Training\3bit\' 1	- 2
2.5 3.6 2.5 2.5 3.7 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.1	Value &c3 logical 10 1 35 Lx1 DMD_Seq Lx1 DMD_Obj Lx1 DT_struct 500 3 Training\3bit\' 1	2
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Value & 3 logical 10 1 35 1x1 DMD_Seq 1x1 DMD_Obj 1x1 DT_struct 500 3 Training\3bit\' 1	2
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	&v3 logical 10 1 35 1x1 DMD_Seq 1x1 DMD_Obj 1x1 DT_struct 500 3 "Training\3bit\" 1	2
22 23 *Define regions on the DMD after knife edge measurment 24 - DMD_out.row_start = 179; DMD_out.row_end = 190; DMD_out.col_start = 309; DMD_out.col_end = 320; 26 - DMD in.row start=420; DMD in row end =514; DMD in col_start = 309; DMD_out.col_end = 320; 21 Not hardware limited: 1.5	1 35 1x1 DMD_Seq 1x1 DMD_Obj 1x1 DT_struct 500 3 1 Training\3bit\' 1	2
2 voletine regions on the DMD after knife edge measurment 24 - DMD_out.row_start = 179; DMD_out.row_end = 190; DMD_out.col_start = 309; DMD_out.col_end = 320; 25 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 26 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 27 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 27 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 27 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 28 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 29 - DMD in.row start=420; DMD in row end =514; DMD is col_start = 309; DMD_out.col_end = 320; 20 - DMD in.row start=420; DMD in row end =514; DMD is col_start=420; DMD is	Ix1 DMD_Seq Ix1 DMD_Obj Ix1 DT_struct 500 3 "Training\3bit\" 1	2
²⁵ ²⁶ DMD in.row start=420; DMD in row and still DMD in rol and sti	Int Drib_Dog Int DT_struct 500 3 'Training\3bit\'	2
Not hardware limited:	3 Training\3bit\'	12
Not hardware limited:	Training\3bit\'	
15	Comments of the second s	
	1 8	
	768x1024 uint8 - 768x1024 uint8	1.5
Currently X100 is next step	786432000x1 uint8 39321600x1 uint8	
	8x768x1024 uint8 50	
Limit: accillaceone communication	its 3 1x1 struct	1
	1x1 VISA_Instrument	1
41 %target error	0.0500	
42 - target_err = 0.05;	1000x1 double	
$\begin{array}{c} 43 \\ 44 - eps=3; \end{array}$	1000x1 double	0.5
45 % file directory to save the data 46 - filedir = 'Training\3bit\';		
47		
48 SA CONTERING US CONTERING CONTERICONTERING CONTERING CONTERING CONTERING CONTERINGO	States and a state of the state	
0 Command Window	And the second	
>> Maintrame_Sequence_Scope		

Error and injection locking parameters

Weight initialization matters (for classification)

Finally: classification error rates

NN breakthrough: long term effort

Parallel networks

Moughames, et al., Optica 7, 640 (2020).

Hardware-motivated learning

Bueno, et al., Optica 5, 756 (2015).

Photonic neurons

Liu et al., Laser and Photonics Reviews 9, 172 (2015). Heuser, et al., J. Appl. Phys 3, 116103 (2018).

Noise

Semenova, et al., Chaos 29, 103128 (2015).

Summary

- Full implementation of all network connections: truly realtime
- Learning realized on physical substrate
- Very efficient learning and system: 1W power consumption
- Next: push the bandwidth

Emerging Topics in Artificial Intelligence (ETAI) 2021 (OP110)

Conference Chairs: Giovanni Volpe, Göteborgs Univ. (Sweden); Joana B. Pereira, Karolinska Institute (Sweden); Daniel Brunner, Institut Franche-Comte Electronique Mecanique Thermique et Optique (France); Aydogan Ozcan, Univ. of California, Los Angeles (USA)

