

Ultrafast Charge Transfer Processes in Dye-Sensitized Nanocrystalline Solar Cells

Jacques-E. Moser

Photochemical Dynamics Research Group Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne

- 1) Electronic transition leading to local charge separation (e⁻...h⁺)
- 2) Sustained charge separation through various possible mechanisms
- 3) Diffusion of charge carriers and collection in metal electrodes

Over the Limit... Free energy waste under polychromatic irradiation

Available fraction of the energy absorbed from a polychromatic source

$$\theta = \frac{\int_{0}^{\lambda_{t}} F_{\lambda} \frac{\lambda}{\lambda_{t}} d\lambda}{\int_{0}^{\infty} F_{\lambda} d\lambda}$$

 $\lambda_{opt} = 1273 \text{ nm} (0.97 \text{ eV}) \implies \theta_{opt} = 0.44$

At each wavelength $\lambda < \lambda_t$, the usable fraction of the absorbed photon energy is:

$$\theta = \frac{hc}{\lambda_t} / \frac{hc}{\lambda} = \frac{\lambda}{\lambda_t}$$

Power conversion efficiency limits

Non-reversible conditions at maximum power extraction

 $\eta_{p} = 0.91$

• Entropy of light (Carnot thermodynamic conversion limitation) $T_R = 5500 \text{ K} \Rightarrow T_{R,a} = 1297 \text{ K} \text{ (without concentrator)} \Rightarrow \underline{\eta_e = 1 - T_{R,a} / T_a = 0.77}$ With 1:10 light concentration $\Rightarrow \eta_e = 0.80$

Strategies for extracting more work from the solar spectrum

- **Multiple junction cells** Tandem cells, intermediate bands, spectral splitting, ...
- Redistribution of photons Spectral up- and down-conversion, ...
- More work per photon Multiple exciton generation (MEG), hot carrier extraction

Mechanisms for sustained charge separation

Sustained charge separation requires some built-in driving force

- a) Light-induced spatial gradient of the quasi-Fermi levels of electrons and holes
- b) Light absorbing material is connected by paths of different resistance. One has much lower resistance for electrons and the other for holes

Conventional and emerging tehnologies

p-n junction: Si, GaAs(1G) Thin-film CIGS, CdTe (2G)

OPV : polymer, small molecule-based (3G)

noble

metal

DSSC : liquid electrolyte, solid HTM-based (3G)

Charge transfer states in OPV systems

Charge transfer states in OPV systems

Sub-20 fs electron injection

Ultrafast injection from hot excited states

Electron and hole injection dynamics

Time-resolved terahertz spectroscopy

Evidence for CT exciton formation and splitting

CT exciton splitting upon hole injection in HTM

Mechanism of e⁻ photoinjection: A new paradigm

EPFL GR-MO

Jan Brauer Angela Punzi Arianna Marchioro Elham Ghadiri Jelissa De Jonghe Mateusz Wielopolski Natalie Banerji Mariateresa Scarongella Joël Teuscher Verner Thorsmølle

Financial support

<u>EPFL LPI</u>

Guido Rothenberger Shaik M. Zakeeruddin Robin Humphry-Baker Michael Grätzel

> Molecular Ultrafast Science And Technology

National Center of Competence in Research

must

Thank you

Best research cell power conversion efficiencies

